TD 11: Équations différentielles

Équations différentielles d'ordre 1 –

1 (ED linéaires d'ordre 1) Résoudre les équations suivantes:

1)
$$y' + y = e^x$$

4)
$$(1+e^x)y'+e^xy=0$$

2)
$$y' - y = 1 + e^{\lambda}$$

2)
$$y' - y = 1 + e^x$$
 5) $\cosh x y' - \sinh x y = \sinh^3 x$

$$3) y'-2y=e^x\cos(2x)$$

3)
$$y' - 2y = e^x \cos(2x)$$
 6) $(1+x^2)y' + 2xy = -1$

2 ★ (Problèmes de Cauchy d'ordre 1) Résoudre les équations suivantes :

1)
$$\begin{cases} y' + y = \frac{1}{1 + e^x} \\ y(\ln 2) = 0 \end{cases}$$

2)
$$\begin{cases} y' - 2xy = -(2x - 1)e^x \\ y(1) = 0 \end{cases}$$

3)
$$\begin{cases} y' + \arctan(\sqrt{1 + e^x})y = 0\\ y(\pi e^{-1}) = 0 \end{cases}$$

3 \(\pm\) (ED linéaires d'ordre 1, bis) Résoudre les équations suivantes sur un intervalle I convenable (s'il y en a plusieurs, choisissez-en un):

$$1) xy' - 2y = 4 \ln x$$

$$2) \ \sqrt{1 - x^2} \, y' + y = 1$$

3)
$$\begin{cases} y' - \frac{1}{\sqrt{1 - x^2}} y = e^{\arccos x} \\ y(0) = 0 \end{cases}$$

4)
$$\begin{cases} y' - \tan(x)y = 1 \\ y\left(\frac{\pi}{4}\right) = 1 \end{cases}$$

4 ★★★ (*ED avec raccord*) On considère l'équation (E): xy' + y = 0.

- 1) Résoudre (E) sur \mathbb{R}_+^* puis sur \mathbb{R}_-^* .
- 2) Si y est une solution de (E) définie sur \mathbb{R} , que serait la valeur de y(0) ?
- 3) Peut-on trouver une solution de (E) sur \mathbb{R} ?

Soit a, b deux fonctions continues sur \mathbb{R} . On considère l'ED

(E):
$$y' + a(t)y + b(t)y^2 = 0$$

On admettra que, si y est une solution qui n'est pas identiquement nulle, alors y ne s'annule jamais.

- 1) Soit y une solution de (E) non identiquement nulle. En posant $z = \frac{1}{v}$, se ramener à une équation linéaire en la fonction z.
- 2) Résoudre l'équation (E).

6 $\star\star\star$ Trouver les fonctions $y:\mathbb{R}\to\mathbb{R}$ qui vérifient l'équation $y' + y = \int_0^1 y(t)dt$. On pourra raisonner par analyse-synthèse.

– Équations différentielles d'ordre 2 ———

7 ★ (ED linéaires d'ordre 2) Résoudre les équations suivantes:

1)
$$4y'' + 8y' + 5y = 2e^x$$
 4) $y'' + 4y = 3\cos^2 x$

4)
$$v'' + 4v = 3\cos^2 x$$

2)
$$y'' - 5y' + 4y = e^x$$
 5) $y'' + iy' = x + 3$

5)
$$y'' + iy' = x + 3$$

3)
$$y'' - 4y' + 4y = 4e^{2x}$$
 6) $y'' + 3y' - 4y = ix^2$

6)
$$y'' + 3y' - 4y = ix^2$$

8 ** (Problème de Cauchy d'ordre 2) Résoudre les problèmes de Cauchy suivants :

$$\int y'' + 4y = \cos(3x)$$

$$\begin{aligned} v(0) &= 1\\ v'(0) &= 0 \end{aligned}$$

1)
$$\begin{cases} y'' + 4y = \cos(3x) \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 2)
$$\begin{cases} y'' + 2y' + 4y = 0 \\ y(0) = 1 \\ y'(0) = 2 \end{cases}$$

9 $\uparrow \star \star \star (ED \ d\acute{e}phas\acute{e})$ Soit $\lambda \in \mathbb{R}$. On souhaite déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}$$
 $f'(x) = f(\lambda - x)$

1) Montrer que si f vérifie cette condition, alors f est deux fois dérivable sur \mathbb{R} .

2) En déduire l'ensemble des fonctions f vérifiant cette condition.

10 ***

- 1) Montrer que l'équation y'' + 2y' + 2y = 0 possède une et une seule solution bornée sur \mathbb{R} .
- 2) Soit $f \in \mathscr{C}(\mathbb{R},\mathbb{R})$. Déduire de la question précédente que l'équation y'' + 2y' + 2y = f(x) possède au plus une solution bornée sur \mathbb{R} .

11 *** Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}$$
 $f'(x) + f(-x) = e^x$

Indication : en justifiant, on pourra dériver l'égalité cidessus et montrer que f vérifie une équation différentielle.